Virtual Planetary Laboratory
This article's use of external links may not follow Wikipedia's policies or guidelines. (August 2020) |
Abbreviation | VPL |
---|---|
Formation | 2001 |
Legal status | Active |
Purpose | To detect exoplanetary habitability and their potential biosignatures. |
Parent organization | NASA |
Website | depts.washington.edu/naivpl |
The Virtual Planetary Laboratory (VPL) is a virtual institute based at the University of Washington that studies how to detect exoplanetary habitability and their potential biosignatures. First formed in 2001, the VPL is part of the NASA Astrobiology Institute (NAI) and connects more than fifty researchers at twenty institutions together in an interdisciplinary effort. VPL is also part of the Nexus for Exoplanet System Science (NExSS) network, with principal investigator Victoria Meadows leading the NExSS VPL team.[1][2]
Research
[edit]The first task considers observations of the Solar System planets, moons, and the asteroid belt to explore processes necessary for habitable environments and for exoplanet model confirmation. Specifically, observations of Europa,[3] Venus,[4] Earth,[5] Mars, and the asteroid belt have helped researchers in Task A address their goals.
Our only data point of a habitable planet today is Earth, although it has not always been habitable. The Early Earth serves as an example of an exoplanet. The VPL research has contributed to the understanding of our early planet. Task B combines geological and biological data[6] with ecosystem[7] and photo-chemical models[8][9] to showcase how planet Earth has changed throughout its history.
This task uses observational data, models and orbital dynamics to explore the distribution of habitable worlds in the universe. The VPL team studies the effects of galactic,[10] stellar,[11] and planetary environments[12] on planetary habitability.
Task D incorporates VPL researchers from diverse and interdisciplinary fields who use laboratory work[13][14] combined with chemical and climate models to study the impact of life on its environment. In addition, the interactions between the biosphere, planet, and host star are explored to determine how they can influence detectable biosignatures.[15]
In the final task, the VPL scientists observe the Solar System and extrasolar planets. The goal of this task is to develop astronomical[16] and remote-sensing retrieval methods. In addition, VPL members use telescope and instrument simulators to study which measurements, observing strategies, and analysis techniques are necessary for the characterization of exoplanets.[17]
Models
[edit]1D Radiative Convective and Photochemical Models
Education & Outreach
[edit]VPL in the News
[edit]February 2017 - Early Earth as a proxy for hazy exoplanets
August 2016 - Is Proxima Centauri b habitable?[18][19]
See also
[edit]- Astrobiology
- Astrochemistry
- Cosmochemistry
- Extraterrestrial atmospheres
- Extraterrestrial liquid water
- Planetary habitability
References
[edit]- ^ Impey, Chris (2010). Talking about Life: Conversations on Astrobiology. Cambridge University Press. pp. 293-302. ISBN 9781139490634.
- ^ Kelley, Peter (April 22, 2015). "UW key player in new NASA coalition to search for life on distant worlds." UW News. Retrieved May 4, 2015.
- ^ Robinson, Tyler D. (January 1, 2011). "Modeling the Infrared Spectrum of the Earth-Moon System: Implications for the Detection and Characterization of Earthlike Extrasolar Planets and Their Moonlike Companions". The Astrophysical Journal. 741 (1): 51. arXiv:1110.3744. Bibcode:2011ApJ...741...51R. doi:10.1088/0004-637X/741/1/51. S2CID 119281936 – via Institute of Physics.
- ^ Arney, Giada; Meadows, Victoria; Crisp, David; Schmidt, Sarah J.; Bailey, Jeremy; Robinson, Tyler (August 1, 2014). "Spatially resolved measurements of H2O, HCl, CO, OCS, SO2, cloud opacity, and acid concentration in the Venus near-infrared spectral windows". Journal of Geophysical Research: Planets. 119 (8): 2014JE004662. Bibcode:2014JGRE..119.1860A. doi:10.1002/2014JE004662.
- ^ Robinson, Tyler D.; Meadows, Victoria S.; Crisp, David; Deming, Drake; A'Hearn, Michael F.; Charbonneau, David; Livengood, Timothy A.; Seager, Sara; Barry, Richard K.; Hearty, Thomas; Hewagama, Tilak; Lisse, Carey M.; McFadden, Lucy A.; Wellnitz, Dennis D. (2011). "Earth as an Extrasolar Planet: Earth Model Validation Using EPOXI Earth Observations". Astrobiology. 11 (5): 393–408. Bibcode:2011AsBio..11..393R. doi:10.1089/ast.2011.0642. PMC 3133830. PMID 21631250.
- ^ Claire, M. W.; Catling, D. C.; Zahnle, K. J. (December 1, 2006). "Biogeochemical modelling of the rise in atmospheric oxygen". Geobiology. 4 (4): 239–269. Bibcode:2006Gbio....4..239C. doi:10.1111/j.1472-4669.2006.00084.x. S2CID 11575334.
- ^ Roberson, A. L.; Roadt, J.; Halevy, I.; Kasting, J. F. (July 1, 2011). "Greenhouse warming by nitrous oxide and methane in the Proterozoic Eon". Geobiology. 9 (4): 313–320. Bibcode:2011Gbio....9..313R. doi:10.1111/j.1472-4669.2011.00286.x. PMID 21682839. S2CID 8426873.
- ^ Zerkle, Aubrey L.; Claire, Mark W.; Domagal-Goldman, Shawn D.; Farquhar, James; Poulton, Simon W. (May 1, 2012). "A bistable organic-rich atmosphere on the Neoarchaean Earth". Nature Geoscience. 5 (5): 359–363. Bibcode:2012NatGe...5..359Z. doi:10.1038/ngeo1425.
- ^ Claire, Mark W.; Kasting, James F.; Domagal-Goldman, Shawn D.; Stüeken, Eva E.; Buick, Roger; Meadows, Victoria S. (September 15, 2014). "Modeling the signature of sulfur mass-independent fractionation produced in the Archean atmosphere" (PDF). Geochimica et Cosmochimica Acta. 141: 365–380. Bibcode:2014GeCoA.141..365C. doi:10.1016/j.gca.2014.06.032.
- ^ Kaib, Nathan A.; Raymond, Sean N.; Duncan, Martin (January 17, 2013). "Planetary system disruption by Galactic perturbations to wide binary stars". Nature. 493 (7432): 381–384. arXiv:1301.3145. Bibcode:2013Natur.493..381K. CiteSeerX 10.1.1.765.6816. doi:10.1038/nature11780. PMID 23292514. S2CID 4303714.
- ^ Segura, Antígona; Walkowicz, Lucianne M.; Meadows, Victoria; Kasting, James; Hawley, Suzanne (September 1, 2010). "The Effect of a Strong Stellar Flare on the Atmospheric Chemistry of an Earth-like Planet Orbiting an M Dwarf". Astrobiology. 10 (7): 751–771. arXiv:1006.0022. Bibcode:2010AsBio..10..751S. doi:10.1089/ast.2009.0376. PMC 3103837. PMID 20879863.
- ^ Kopparapu, R. K.; Raymond, S. N.; Barnes, R. (2009). "Stability of Additional Planets in and Around the Habitable Zone of the HD 47186 Planetary System". The Astrophysical Journal Letters. 695 (2): L181–L184. arXiv:0903.3597. Bibcode:2009ApJ...695L.181K. doi:10.1088/0004-637x/695/2/l181. S2CID 17136043.
- ^ Anderson, Rika E.; Sogin, Mitchell L.; Baross, John A. (January 1, 2015). "Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents". FEMS Microbiology Ecology. 91 (1): 1–11. doi:10.1093/femsec/fiu016. hdl:1912/7205. PMID 25764538.
- ^ Breitbart, Mya; Hoare, Ana; Nitti, Anthony; Siefert, Janet; Haynes, Matthew; Dinsdale, Elizabeth; Edwards, Robert; Souza, Valeria; Rohwer, Forest; Hollander, David (January 1, 2009). "Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico". Environmental Microbiology. 11 (1): 16–34. Bibcode:2009EnvMi..11...16B. doi:10.1111/j.1462-2920.2008.01725.x. PMID 18764874.
- ^ Domagal-Goldman, Shawn D.; Meadows, Victoria S.; Claire, Mark W.; Kasting, James F. (June 1, 2011). "Using biogenic sulfur gases as remotely detectable biosignatures on anoxic planets". Astrobiology. 11 (5): 419–441. Bibcode:2011AsBio..11..419D. doi:10.1089/ast.2010.0509. PMC 3133782. PMID 21663401.
- ^ Schwieterman, Edward W.; Meadows, Victoria S.; Domagal-Goldman, Shawn D.; Deming, Drake; Arney, Giada N.; Luger, Rodrigo; Harman, Chester E.; Misra, Amit; Barnes, Rory (January 1, 2016). "Identifying Planetary Biosignature Impostors: Spectral Features of CO and O4 Resulting from Abiotic O2/O3 Production". The Astrophysical Journal Letters. 819 (1): L13. arXiv:1602.05584. Bibcode:2016ApJ...819L..13S. doi:10.3847/2041-8205/819/1/L13. PMC 6108182. PMID 30147857.
- ^ Luger, Rodrigo; et al. (March 12, 2017). "A terrestrial-sized exoplanet at the snow line of TRAPPIST-1". Nature Astronomy. 1 (6): 0129. arXiv:1703.04166. Bibcode:2017NatAs...1E.129L. doi:10.1038/s41550-017-0129. S2CID 54770728.
- ^ Meadows, V. S.; Arney, G. N.; Schwieterman, E. W.; Lustig-Yaeger, J.; Lincowski, A. P.; Robinson, T.; Domagal-Goldman, S. D.; Deitrick, R.; Barnes, R. K.; Fleming, D. P.; Luger, R.; Driscoll, P. E.; Quinn, T. R.; Crisp, D.; et al. (August 30, 2016). "The Habitability of Proxima Centauri b: II: Environmental States and Observational Discriminants". Astrobiology. 18 (2): 133–189. arXiv:1608.08620. Bibcode:2018AsBio..18..133M. doi:10.1089/ast.2016.1589. PMC 5820795. PMID 29431479.
- ^ Barnes, Rory; et al. (August 24, 2016). "The Habitability of Proxima Centauri b I: Evolutionary Scenarios". arXiv:1608.06919 [astro-ph.EP].
External links
[edit]- The Virtual Planetary Laboratory at the University of Washington